High School Physics

Scope and Sequence

Unit of Study 1: Forces and Motion (25 Days)

Standards that appear in this unit: HS-PS2-1, HS-PS2-2, HS-PS2-3*, HS-ETS1-2, HS-ETS1-3

<table>
<thead>
<tr>
<th>HS. Forces and Interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>HS-PS2-1. Analyze data to support the claim that Newton’s second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

- **Science and Engineering Practices**
 - Analyzing and Interpreting Data
 - Analyzing data in 9–12 builds on K–8 and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.
 - Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-PS2-1)

- **Disciplinary Core Ideas**
 - **PS2.A: Forces and Motion**
 - Newton’s second law accurately predicts changes in the motion of macroscopic objects. (HS-PS2-1)

- **Crosscutting Concepts**
 - **Cause and Effect**
 - Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS2-1)

Connections to other DCIs in this grade-band: HS.PS3.C (HS-PS2-1); HS.ESS1.A (HS-PS2-1); HS.ESS1.C (HS-PS2-1); HS.ESS2.C (HS-PS2-1)

Articulation to DCIs across grade-bands: MS.PS2.A (HS-PS2-1); MS.PS3.C (HS-PS2-1)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS2-1)

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS2-1)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-1)

Mathematics –

MP.2 Reason abstractly and quantitatively. (HS-PS2-1)

MP.4 Model with mathematics. (HS-PS2-1)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-1)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1)

HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-1)

HSA-SSE.A.1 Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1)

HSA-SSE.A.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-1)

HSA-SSE.A.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-1)

HSF-IF.C.7 Graph functions expressed symbolically and show key features of the graph, by in hand in simple cases and using technology for more complicated cases. (HS-PS2-1)

HSS-ID.A.1 Represent data with plots on the real number line (dot plots, histograms, and box plots). (HS-PS2-1)
HS. Forces and Interactions

Students who demonstrate understanding can:

HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. [Clarification Statement: Emphasis is on the quantitative conservation of momentum in interactions and the qualitative meaning of this principle.] [Assessment Boundary: Assessment is limited to systems of two macroscopic bodies moving in one dimension.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Mathematics and Computational Thinking</td>
<td>PS2.A: Forces and Motion</td>
<td>Systems and System Models</td>
</tr>
</tbody>
</table>

- **PS2.A: Forces and Motion**
 - Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object. (HS-PS2-2)
 - If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. (HS-PS2-2)

Connections to other DCIs in this grade-band: [HS.ESS1.A](#) (HS-PS2-2); [HS.ESS1.C](#) (HS-PS2-2)

Articulation to DCIs across grade-bands: [MS.PS2.A](#) (HS-PS2-2); [MS.PS3.C](#) (HS-PS2-2)

Common Core State Standards Connections:

- **Mathematics**
 - **MP.2** Reason abstractly and quantitatively. (HS-PS2-2)
 - **MP.4** Model with mathematics. (HS-PS2-2)
 - **HSN-Q.A.1** Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-2)
 - **HSN-Q.A.2** Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-2)
 - **HSN-Q.A.3** Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-2)
 - **HSA-CED.A.1** Create equations and inequalities in one variable and use them to solve problems. (HS-PS2-2)
 - **HSA-CED.A.2** Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-PS2-2)
 - **HSA-CED.A.4** Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS2-2)
HS. Forces and Interactions

Students who demonstrate understanding can:

HS-PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. [Clarification Statement: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and modifying the design to improve it. Examples of a device could include a football helmet or a parachute.] [Assessment Boundary: Assessment is limited to qualitative evaluations and/or algebraic manipulations.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>PS2.A: Forces and Motion</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Apply scientific ideas to solve a design problem, taking into account possible unanticipated effects. (HS-PS2-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETS1.A: Defining and Delimiting Engineering Problems</td>
<td>• If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced by changes in the momentum of objects outside the system. (HS-PS2-3)</td>
<td></td>
</tr>
<tr>
<td>• Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS2-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETS1.C: Optimizing the Design Solution</td>
<td>• Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondary to HS-PS2-3)</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: N/A

Articulation to DCIs across grade-bands: **MS.PS2.A** (HS-PS2-3); **MS.PS3.C** (HS-PS2-3)

Common Core State Standards Connections:

ELA/Literacy – WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS2-3)
HS. Engineering Design

Students who demonstrate understanding can:

HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ETS1.C: Optimizing the Design Solution</td>
<td></td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ETS1-2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to HS-ETS1.A: Defining and Delimiting Engineering Problems include:

- **Physical Science:** HS-PS2-3, HS-PS3-3

Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include:

- **Earth and Space Science:** HS-ESS3-2, HS-ESS3-4, **Life Science:** HS-LS2-7, HS-LS4-6

Connections to HS-ETS1.C: Optimizing the Design Solution include:

- **Physical Science:** HS-PS1-6, HS-PS2-3

Articulation of DCIs across grade-bands: **MS.ETS1.A** (HS-ETS1-2); **MS.ETS1.B** (HS-ETS1-2); **MS.ETS1.C** (HS-ETS1-2)

Common Core State Standards Connections:

- **Mathematics – MP.4** — Model with mathematics. (HS-ETS1-2)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
HS. Engineering Design

Students who demonstrate understanding can:

HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories.

- Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ETS1-3)

Disciplinary Core Ideas

ETS1.B: Developing Possible Solutions

- When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3)

Crosscutting Concepts

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

- New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ETS1-3)

Connections to HS-ETS1.A: Defining and Delimiting Engineering Problems include:

- **Physical Science**: HS-PS2-3, HS-PS3-3

Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include:

- **Earth and Space Science**: HS-ESS3-2, HS-ESS3-4, **Life Science**: HS-LS2-7, HS-LS4-6

Connections to HS-ETS1.C: Optimizing the Design Solution include:

- **Physical Science**: HS-PS1-6, HS-PS2-3

Articulation of DCIs across grade-bands: **MS.ETS1.A** (HS-ETS1-3); **MS.ETS1.B** (HS-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ETS1-3)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-3)

RST.11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-ETS1-3)

Mathematics –

MP.2 Reason abstractly and quantitatively. (HS-ETS1-3)

MP.4 Model with mathematics. (HS-ETS1-3)
Unit of Study 2: Fundamental Forces (15 Days)

Standards that appear in this unit: HS-PS2-4

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2.B: Types of Interactions</td>
<td>Patterns</td>
</tr>
<tr>
<td>- Newton’s law of universal gravitation and Coulomb’s law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4)</td>
<td>- Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-PS2-4)</td>
</tr>
<tr>
<td>- Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-4)</td>
<td></td>
</tr>
</tbody>
</table>

Science and Engineering Practices

Using Mathematics and Computational Thinking

Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Use mathematical representations of phenomena to describe explanations. (HS-PS2-4)

Connections to Nature of Science

- Theories and laws provide explanations in science. (HS-PS2-4)
- Laws are statements or descriptions of the relationships among observable phenomena. (HS-PS2-4)

Connections to other DCIs in this grade-band: HS.PS3.A (HS-PS2-4); HS.ESS1.A (HS-PS2-4); HS.ESS1.B (HS-PS2-4); HS.ESS1.C (HS-PS2-4); HS.ESS2.C (HS-PS2-4); HS.ESS3.A (HS-PS2-4)

Articulation to DCIs across grade-bands: MS.PS2.B (HS-PS2-4); MS.ESS1.B (HS-PS2-4)

HS.Force and Interactions

Students who demonstrate understanding can:

HS-PS2-4. Use mathematical representations of Newton’s Law of Gravitation and Coulomb’s Law to describe and predict the gravitational and electrostatic forces between objects. [Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of gravitational and electric fields.]

[Assessment Boundary: Assessment is limited to systems with two objects.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

- **Science and Engineering Practices**
- **Using Mathematics and Computational Thinking**
 - Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.
 - Use mathematical representations of phenomena to describe explanations. (HS-PS2-4)

- **Disciplinary Core Ideas**
 - **PS2.B: Types of Interactions**
 - Newton’s law of universal gravitation and Coulomb’s law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. (HS-PS2-4)
 - Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-4)

- **Crosscutting Concepts**
 - **Patterns**
 - Different patterns may be observed at each of the scales at which a system is studied and can provide evidence for causality in explanations of phenomena. (HS-PS2-4)
Common Core State Standards Connections:

Mathematics –

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.2</td>
<td>Reason abstractly and quantitatively. (HS-PS2-4)</td>
</tr>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (HS-PS2-4)</td>
</tr>
<tr>
<td>HSN-Q.A.1</td>
<td>Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-4)</td>
</tr>
<tr>
<td>HSN-Q.A.2</td>
<td>Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-4)</td>
</tr>
<tr>
<td>HSN-Q.A.3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-4)</td>
</tr>
<tr>
<td>HSA-SSE.A.1</td>
<td>Interpret expressions that represent a quantity in terms of its context. (HS-PS2-4)</td>
</tr>
<tr>
<td>HSA-SSE.B.3</td>
<td>Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS2-4)</td>
</tr>
</tbody>
</table>
Unit of Study 3: Kepler’s Laws (12 Days)

Standards that appear in this unit: **HS-ESS1-4**

<table>
<thead>
<tr>
<th>HS. Space Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>HS-ESS1-4. Use mathematical or computational representations to predict the motion of orbiting objects in the solar system. [Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.] [Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler’s Laws of orbital motions should not deal with more than two bodies, nor involve calculus.]</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Mathematical and Computational Thinking</td>
</tr>
<tr>
<td>Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.</td>
</tr>
<tr>
<td>- Use mathematical or computational representations of phenomena to describe explanations. (HS-ESS1-4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS1.B: Earth and the Solar System</td>
</tr>
<tr>
<td>- Kepler’s laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system. (HS-ESS1-4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale, Proportion, and Quantity</td>
</tr>
<tr>
<td>- Algebraic thinking is used to examine scientific data and predict the effect of a change in one variable on another (e.g., linear growth vs. exponential growth). (HS-ESS1-4)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: **HS.PS2.B** (HS-ESS1-4)

Articulation of DCIs across grade-bands: **MS.PS2.A** (HS-ESS1-4); **MS.PS2.B** (HS-ESS1-4); **MS.ESS1.A** (HS-ESS1-4); **MS.ESS1.B** (HS-ESS1-4)

Common Core State Standards Connections: **Mathematics** –

- **MP.2** Reason abstractly and quantitatively. (HS-ESS1-4)
- **MP.4** Model with mathematics. (HS-ESS1-4)
- **HSN-Q.A.1** Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS1-4)
- **HSN-Q.A.2** Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS1-4)
- **HSN-Q.A.3** Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS1-4)
- **HSA-SSE.A.1** Interpret expressions that represent a quantity in terms of its context. (HS-ESS1-4)
- **HSA-CED.A.2** Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (HS-ESS1-4)
- **HSA-CED.A.4** Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-ESS1-4)
Unit of Study 4: Energy (28 Days)

Standards that appear in this unit: HS-PS3-2, HS-PS3-1, HS-PS3-3*, HS-ETS1-1, HS-ETS1-2, HS-ETS1-3, HS-ETS1-4

HS. Energy

Students who demonstrate understanding can:

HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative position of particles (objects).
[Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education:*

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>PS3.A: Definitions of Energy</td>
<td>Energy and Matter</td>
</tr>
</tbody>
</table>
| Modeling in 9–12 builds on K–8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.
 ▪ Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS3-2) | ▪ Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS-PS3-2)
 ▪ At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HS-PS3-2)
 ▪ These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space. (HS-PS3-2) | ▪ Energy cannot be created or destroyed—only moves between one place and another place, between objects and/or fields, or between systems. (HS-PS3-2) |

Connections to other DCIs in this grade-band: HS-PS1.A (HS-PS3-2); HS-PS1.B (HS-PS3-2); HS-PS2.B (HS-PS3-2); HS-ESS2.A (HS-PS3-2)

Articulation to DCIs across grade-bands: MS-PS1.A (HS-PS3-2); MS-PS2.B (HS-PS3-2); MS-PS3.A (HS-PS3-2); MS-PS3.C (HS-PS3-2)

Common Core State Standards Connections:

- **ELA/Literacy** –
 SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-2)

- **Mathematics** –
 MP.2 Reason abstractly and quantitatively. (HS-PS3-2)
 MP.4 Model with mathematics. (HS-PS3-2)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
HS. Energy

Students who demonstrate understanding can:

HS-PS3-1. Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. [Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.] [Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

|---|---|---|
| Mathematical and computational thinking at the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.
 • Create a computational model or simulation of a phenomenon, designed device, process, or system. (HS-PS3-1) | **PS3.A: Definitions of Energy**
 • Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. (HS-PS3-1) | **Models can be used to predict the behavior of a system, but these predictions have limited precision and reliability due to the assumptions and approximations inherent in models. (HS-PS3-1)** |
| **PS3.B: Conservation of Energy and Energy Transfer**
 • Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. (HS-PS3-1)
 • Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. (HS-PS3-1)
 • Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. (HS-PS3-1)
 • The availability of energy limits what can occur in any system. (HS-PS3-1) | **Connections to Nature of Science**
 Scientific Knowledge Assumes an Order and Consistency in Natural Systems
 • Science assumes the universe is a vast single system in which basic laws are consistent. (HS-PS3-1) |

Connections to other DCIs in this grade-band: **HS.PS1.B** (HS-PS3-1); **HS.LS2.B** (HS-PS3-1); **HS.ESS1.A** (HS-PS3-1); **HS.ESS2.A** (HS-PS3-1)

Articulation to DCIs across grade-bands: **MS.PS3.A** (HS-PS3-1); **MS.PS3.B** (HS-PS3-1); **MS.ESS2.A** (HS-PS3-1)

Common Core State Standards Connections:

ELA/Literacy – SL.11-12.5
Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-1)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
MATHEMATICS

<table>
<thead>
<tr>
<th>MP.2</th>
<th>Reason abstractly and quantitatively. (HS-PS3-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (HS-PS3-1)</td>
</tr>
<tr>
<td>HSN-Q.A1</td>
<td>Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS3-1)</td>
</tr>
<tr>
<td>HSN-Q.A2</td>
<td>Define appropriate quantities for the purpose of descriptive modeling. (HS-PS3-1)</td>
</tr>
<tr>
<td>HSN-Q.A3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS3-1)</td>
</tr>
</tbody>
</table>

HS. ENERGY

Students who demonstrate understanding can:

HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy. [Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency. Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

- **Constructing Explanations and Designing Solutions**
 - Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles, and theories.
 - Design, evaluate, and/or refine a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-PS3-3)

Disciplinary Core Ideas

- **PS3.A: Definitions of Energy**
 - At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. (HS-PS3-3)
- **PS3.D: Energy in Chemical Processes**
 - Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. (HS-PS3-3)
- **ETS1.A: Defining and Delimiting Engineering Problems**
 - Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary to HS-PS3-3)

Crosscutting Concepts

- **Energy and Matter**
 - Changes of energy and matter in a system can be described in terms of energy and matter flows into, out of, and within that system. (HS-PS3-3)

Connections to Engineering, Technology, and Applications of Science

- **Influence of Science, Engineering, and Technology on Society and the Natural World**
 - Modern civilization depends on major technological systems. Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-PS3-3)

Connections to other DCIs in this grade-band: **HS.ESS3.A** (HS-PS3-3)

Articulation to DCIs across grade-bands: **MS.PS3.A** (HS-PS3-3); **MS.PS3.B** (HS-PS3-3); **MS.ESS2.A** (HS-PS3-3)

Common Core State Standards Connections:

ELA/Literacy – WHST.9-12.7

Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS3-3)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
Mathematics

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.2 Reason abstractly and quantitatively. (HS-PS3-3)</td>
<td>RST.11 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ETS1-1)</td>
</tr>
<tr>
<td>MP.4 Model with mathematics. (HS-PS3-3)</td>
<td>RST.12 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical publication, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1)</td>
</tr>
<tr>
<td>HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS3-3)</td>
<td>RST.13 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-ETS1-1)</td>
</tr>
<tr>
<td>HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS3-3)</td>
<td>RST.3 Perform quantitative analysis of finding patterns and regularities in data using spreadsheets, graphing calculators, digital tools, and/or other means that exhibit or reveal trends such as linear, exponential, or periodic. (HS-PS3-3)</td>
</tr>
<tr>
<td>HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS3-3)</td>
<td>RST.6 Communicate scientific and technical information in writing, visually, or orally to various audiences. (HS-PS3-3)</td>
</tr>
</tbody>
</table>

Science and Engineering Practices

Scientific and Engineering Practices
- **Asking Questions and Defining Problems**
 - Asking questions and defining problems in 9–12 builds on K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.
 - Analyze complex real-world problems by specifying criteria and constraints for successful solutions. (HS-ETS1-1)

Disciplinary Core Ideas
- **ETS1.A: Defining and Delimiting Engineering Problems**
 - Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (HS-ETS1-1)
 - Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. (HS-ETS1-1)

Crosscutting Concepts
- **Connections to Engineering, Technology, and Applications of Science**
 - Influence of Science, Engineering, and Technology on Society and the Natural World
 - New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ETS1-1)

Connections to HS-ETS1.A: Defining and Delimiting Engineering Problems include:
- **Physical Science**: HS-PS2-3, HS-PS3-3
- **Earth and Space Science**: HS-ESS3-2, HS-ESS3-4, **Life Science**: HS-LS2-7, HS-LS4-6

Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include:
- **Physical Science**: HS-PS1-6, HS-PS2-3

Articulation of DCIs across grade-bands: **MS.ETS1.A** (HS-ETS1-1)

Common Core State Standards Connections:
- **ELA/Literacy – RST.11-12.7** Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ETS1-1)
- **RST.11-12.8** Evaluate the hypotheses, data, analysis, and conclusions in a science or technical publication, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1)
- **RST.11-12.9** Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-ETS1-1)
Mathematics –

<table>
<thead>
<tr>
<th>MP.2</th>
<th>Reason abstractly and quantitatively. (HS-ETS1-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.4</td>
<td>Model with mathematics. (HS-ETS1-1)</td>
</tr>
</tbody>
</table>

HS. Engineering Design

Students who demonstrate understanding can:

HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

- Constructing explanations and designing solutions in K-8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories.
 - Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ETS1-2)

Disciplinary Core Ideas

ETS1.C: Optimizing the Design Solution

- Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (HS-ETS1-2)

Crosscutting Concepts

N/A

Connections to HS-ETS1.A: Defining and Delimiting Engineering Problems include:

- **Physical Science**: HS-PS2-3, HS-PS3-3

Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include:

- **Earth and Space Science**: HS-ESS3-2, HS-ESS3-4, **Life Science**: HS-LS2-7, HS-LS4-6

Connections to HS-ETS1.C: Optimizing the Design Solution include:

- **Physical Science**: HS-PS1-6, HS-PS2-3

Articulation of DCIs across grade-bands: **MS.ETS1.A** (HS-ETS1-2); **MS.ETS1.B** (HS-ETS1-2); **MS.ETS1.C** (HS-ETS1-2)

Common Core State Standards Connections:

Mathematics –

| MP.4 | Model with mathematics. (HS-ETS1-2) |

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
HS. Engineering Design

Students who demonstrate understanding can:

HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories.</td>
<td>• When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3)</td>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
<tr>
<td>• Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ETS1-3)</td>
<td></td>
<td>• New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ETS1-3)</td>
</tr>
</tbody>
</table>

Connections to HS-ETS1.A: Defining and Delimiting Engineering Problems include:

Physical Science: HS-PS2-3, HS-PS3-3

Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include:

Earth and Space Science: HS-ESS3-2, HS-ESS3-4, **Life Science:** HS-LS2-7, HS-LS4-6

Connections to HS-ETS1.C: Optimizing the Design Solution include:

Physical Science: HS-PS1-6, HS-PS2-3

Articulation of DCIs across grade-bands: **MS.ETS1.A** (HS-ETS1-3); **MS.ETS1.B** (HS-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy –

- **RST.11-12.7** Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ETS1-3)

- **RST.11-12.8** Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-3)

- **RST.11-12.9** Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-ETS1-3)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (HS-ETS1-3)

- **MP.4** Model with mathematics. (HS-ETS1-3)
HS. Engineering Design

Students who demonstrate understanding can:

HS-ETS1-4. Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Using Mathematics and Computational Thinking

Mathematical and computational thinking in 9–12 builds on K–8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems. (HS-ETS1-4)

Disciplinary Core Ideas

ETS1.B: Developing Possible Solutions

- Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs. (HS-ETS1-4)

Crosscutting Concepts

Systems and System Models

- Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. (HS-ETS1-4)

Connections to HS-ETS1.A: Defining and Delimiting Engineering Problems include:

- **Physical Science:** HS-PS2-3, HS-PS3-3

Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include:

- **Earth and Space Science:** HS-ESS3-2, HS-ESS3-4, **Life Science:** HS-LS2-7, HS-LS4-6

Connections to HS-ETS1.C: Optimizing the Design Solution include:

- **Physical Science:** HS-PS1-6, HS-PS2-3

Articulation of DCIs across grade-bands: **MS.ETS1.A** (HS-ETS1-4); **MS.ETS1.B** (HS-ETS1-4); **MS.ETS1.C** (HS-ETS1-4)

Common Core State Standards Connections:

Mathematics

- **MP.2** Reason abstractly and quantitatively. (HS-ETS1-4)
- **MP.4** Model with mathematics. (HS-ETS1-4)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
Unit of Study 5: Plate Tectonics & Large-Scale Systems (12 Days)

Standards that appear in this unit: HS-ESS2-1, HS-ESS2-3, HS-ESS1-5, HS-ESS2-2

<table>
<thead>
<tr>
<th>HS. History of Earth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>HS-ESS2-1. Develop a model to illustrate how Earth’s internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features. [Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and sea-floor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as weathering, mass wasting, and coastal erosion).] [Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth’s surface.]</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
</tr>
<tr>
<td>Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).</td>
</tr>
<tr>
<td>▪ Develop a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-ESS2-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESS2.A: Earth Materials and Systems</td>
</tr>
<tr>
<td>▪ Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. (HS-ESS2-1) (Note: This Disciplinary Core Idea is also addressed by HS-ESS2-2.)</td>
</tr>
<tr>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions</td>
</tr>
<tr>
<td>▪ Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (HS-ESS2-1)</td>
</tr>
<tr>
<td>▪ Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth’s crust. (ESS2.B Grade 8 GBE) (HS-ESS2-1)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: HS.PS2.B (HS-ESS2-1)

Articulation of DCIs across grade-bands: MS.PS2.B (HS-ESS2-1); MS.LS2.B (HS-ESS2-1); MS.ESS1.C (HS-ESS2-1); MS.ESS2.A (HS-ESS2-1); MS.ESS2.B (HS-ESS2-1); MS.ESS2.C (HS-ESS2-1); MS.ESS2.D (HS-ESS2-1)

Common Core State Standards Connections:

<table>
<thead>
<tr>
<th>ELA/Literacy – SL.11-12.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS2-2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics – MP.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reason abstractly and quantitatively. (HS-ESS2-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics – MP.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model with mathematics. (HS-ESS2-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics – HSN-Q.A.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS2-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics – HSN-Q.A.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Define appropriate quantities for the purpose of descriptive modeling (HS-ESS2-1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mathematics – HSN-Q.A.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities (HS-ESS2-1)</td>
</tr>
</tbody>
</table>

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin.
HS. Earth’s Systems

Students who demonstrate understanding can:

HS-ESS2-3. Develop a model based on evidence of Earth’s interior to describe the cycling of matter by thermal convection. [Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth’s three-dimensional structure obtained from seismic waves, records of the rate of change of Earth’s magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth’s layers from high-pressure laboratory experiments.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>ESS2.A: Earth Materials and Systems</td>
<td>Energy and Matter</td>
</tr>
<tr>
<td>Modeling in 9–12 builds on K–8 experiences and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed world(s).</td>
<td>• Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth’s surface and its magnetic field, and an understanding of physical and chemical processes lead to a model of Earth with a hot but solid inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal convection, which involves the cycling of matter due to the outward flow of energy from Earth’s interior and gravitational movement of denser materials toward the interior. (HS-ESS2-3)</td>
<td>• Energy drives the cycling of matter within and between systems. (HS-ESS2-3)</td>
</tr>
<tr>
<td>Connections to Nature of Science</td>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions</td>
<td></td>
</tr>
<tr>
<td>Scientific Knowledge is Based on Empirical Evidence</td>
<td>• The radioactive decay of unstable isotopes continually generates new energy within Earth’s crust and mantle, providing the primary source of the heat that drives mantle convection. Plate tectonics can be viewed as the surface expression of mantle convection. (HS-ESS2-3)</td>
<td></td>
</tr>
<tr>
<td>• Science knowledge is based on empirical evidence. (HS-ESS2-3)</td>
<td>• PS4.A: Wave Properties</td>
<td></td>
</tr>
<tr>
<td>• Science disciplines share common rules of evidence used to evaluate explanations about natural systems. (HS-ESS2-3)</td>
<td>Geologists use seismic waves and their reflection at interfaces between layers to probe structures deep in the planet. (secondary to HS-ESS2-3)</td>
<td></td>
</tr>
<tr>
<td>• Science includes the process of coordinating patterns of evidence with current theory. (HS-ESS2-3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: [HS-PS2.B (HS-ESS2-3); HS-PS3.B (HS-ESS2-3); HS-PS3.D (HS-ESS2-3)]

Articulation of DCIs across grade-bands: [MS-PS1.A (HS-ESS2-3); MS-PS1.B (HS-ESS2-3); MS-PS2.B (HS-ESS2-3); MS-PS3.A (HS-ESS2-3); MS-PS3.B (HS-ESS2-3); MS-ESS2.A (HS-ESS2-3); MS-ESS2.B (HS-ESS2-3)]

Common Core State Standards Connections:

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS2-3)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-ESS2-3)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin

18
Mathematics

MP.2 Reason abstractly and quantitatively. (HS-ESS2-3)

MP.4 Model with mathematics. (HS-ESS2-3)

HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS2-3)

HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS2-3)

HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-3)

HS. History of Earth

Students who demonstrate understanding can:

HS-ESS1-5. Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. [Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust increasing with distance away from a central ancient core (a result of past plate interactions).]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

ESS1.C: The History of Planet Earth

- Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. (HS-ESS1-5)

ESS2.B: Plate Tectonics and Large-Scale System Interactions

- Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary to HS-ESS1-5)

PS1.C: Nuclear Processes

- Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-5)

Crosscutting Concepts

Patterns

- Empirical evidence is needed to identify patterns. (HS-ESS1-5)

Disciplinary Core Ideas

ESS1.C: The History of Planet Earth

- Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less than 200 million years old. (HS-ESS1-5)

ESS2.B: Plate Tectonics and Large-Scale System Interactions

- Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary to HS-ESS1-5)

PS1.C: Nuclear Processes

- Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary to HS-ESS1-5)

Common Core State Standards Connections:

ELA/Literacy – RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS1-5)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ESS1-5)

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-ESS1-5)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
HS. Earth’s Systems

Students who demonstrate understanding can:

HS-ESS2-2. Analyze geoscience data to make the claim that one change to Earth’s surface can create feedbacks that cause changes to other Earth systems. [Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that melts glacial ice, which reduces the amount of sunlight reflected from Earth’s surface, increasing surface temperatures and further reducing the amount of ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ESS2.A: Earth Materials and Systems</td>
<td>Stability and Change</td>
</tr>
<tr>
<td>Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data.</td>
<td>Earth’s systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes (HS-ESS2-2)</td>
<td>Feedback (negative or positive) can stabilize or destabilize a system. (HS-ESS2-2)</td>
</tr>
<tr>
<td>▪ Analyze data using tools, technologies, and/or models (e.g., computational, mathematical) in order to make valid and reliable scientific claims or determine an optimal design solution. (HS-ESS2-2)</td>
<td>ESS2.D: Weather and Climate</td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td></td>
<td>▪ The foundation for Earth’s global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy’s re-radiation into space. (HS-ESS2-2)</td>
<td>Influence of Engineering, Technology, and Science on Society and the Natural World</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ESS2-2)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: HS.PS3.B (HS-ESS2-2); HS.PS4.B (HS-ESS2-2); HS.LS2.B (HS-ESS2-2); HS.LS2.C (HS-ESS2-2); HS.LS4.D (HS-ESS2-2); HS.ESS3.C (HS-ESS2-2); HS.ESS3.D (HS-ESS2-2)

Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS2-2)

RST.11-12.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS2-2)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
<table>
<thead>
<tr>
<th>Mathematics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MP.2</td>
<td>Reason abstractly and quantitatively. (HS-ESS2-2)</td>
</tr>
<tr>
<td>HSN-Q.A.1</td>
<td>Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS2-2)</td>
</tr>
<tr>
<td>HSN-Q.A.3</td>
<td>Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS2-2)</td>
</tr>
</tbody>
</table>
Unit of Study 6: Wave Properties (28 Days)

Standards that appear in this unit: HS-PS4-1

Standards

HS. Waves and Electromagnetic Radiation

Students who demonstrate understanding can:

HS-PS4-1. Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. [Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth.] [Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices Using Mathematics and Computational Thinking

Mathematical and computational thinking at the 9-12 level builds on K-8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions.

- Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or explanations. (HS-PS4-1)

Disciplinary Core Ideas

PS4.A: Wave Properties

- The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing. (HS-PS4-1)

Crosscutting Concepts

Cause and Effect

- Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS4-1)

Connections to other DCIs in this grade-band: HS.ESS2.A (HS-PS4-1)

Articulation to DCIs across grade-bands: MS.PS4.A (HS-PS4-1); MS.PS4.B (HS-PS4-1)

Common Core State Standards Connections:

ELA/Literacy – RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS4-1)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (HS-PS4-1)
- **MP.4** Model with mathematics. (HS-PS4-1)
- **HSA-SSE.A.1** Interpret expressions that represent a quantity in terms of its context. (HS-PS4-1)
- **HSA-SSE.B.3** Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS4-1)
- **HSA.CED.A.4** Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS4-1)
Unit of Study 7: Electromagnetic Radiation

Standards that appear in this unit: HS-PS4-3, HS-PS4-4, HS-PS4-5*, HS-ETS1-1, HS-ETS1-3, HS-PS4-2

<table>
<thead>
<tr>
<th>HS. Waves and Electromagnetic Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>HS-PS4-3. Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other. [Clarification Statement: Emphasis is on how the experimental evidence supports the claim and how a theory is generally modified in light of new evidence. Examples of a phenomenon could include resonance, interference, diffraction, and photoelectric effect.] [Assessment Boundary: Assessment does not include using quantum theory.]</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
</tr>
<tr>
<td>Engaging in argument from evidence in 9–12 builds on K–8 experiences and progresses to using appropriate and sufficient evidence and scientific reasoning to defend and critique claims and explanations about natural and designed worlds. Arguments may also come from current scientific or historical episodes in science.</td>
</tr>
<tr>
<td>- Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. (HS-PS4-3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS4.A: Wave Properties</td>
</tr>
<tr>
<td>- [From the 3–5 grade band endpoints] Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) (HS-PS4-3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systems and System Models</td>
</tr>
<tr>
<td>- Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows—within and between systems at different scales. (HS-PS4-3)</td>
</tr>
</tbody>
</table>

Connections to Nature of Science

Science Models, Laws, Mechanisms, and Theories Explain Natural Phenomena

- A scientific theory is a substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experiment and the science community validates each theory before it is accepted. If new evidence is discovered that the theory does not accommodate, the theory is generally modified in light of this new evidence. (HS-PS4-3)

Connections to other DCIs in this grade-band: HS.PS3.D (HS-PS4-3); HS.ESS1.A (HS-PS4-3); HS.ESS2.D (HS-PS4-3)

Articulation to DCIs across grade-bands: MS.PS4.B (HS-PS4-3)
Common Core State Standards Connections:

ELA/Literacy –

RST.9-10.8	Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-PS4-3)
RST.11-12.1	Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS4-4)
RST.11-12.8	Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-PS4-4)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (HS-PS4-3)
- **HSA-SSE.A.1** Interpret expressions that represent a quantity in terms of its context. (HS-PS4-3)
- **HSA-SSE.B.3** Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. (HS-PS4-3)
- **HSA.CED.A.4** Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. (HS-PS4-3)

HS. Waves and Electromagnetic Radiation

Students who demonstrate understanding can:

HS-PS4-4. Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter. [Clarification Statement: Emphasis is on the idea that photons associated with different frequencies of light have different energies, and the damage to living tissue from electromagnetic radiation depends on the energy of the radiation. Examples of published materials could include trade books, magazines, web resources, videos, and other passages that may reflect bias.] [Assessment Boundary: Assessment is limited to qualitative descriptions.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

| Science and Engineering Practices
| Disciplinary Core Ideas
| Crosscutting Concepts

Obtaining, Evaluating, and Communicating Information

- Obtaining, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs.
- Evaluate the validity and reliability of multiple claims that appear in scientific and technical texts or media reports, verifying the data when possible. (HS-PS4-4)

PS4.B: Electromagnetic Radiation

- When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy (heat). Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living cells. (HS-PS4-4)

Connections to other DCIs in this grade-band: **HS.PS1.C** (HS-PS4-4); **HS.PS3.A** (HS-PS4-4); **HS.PS3.D** (HS-PS4-4); **HS.LS1.C** (HS-PS4-4)

Articulation to DCIs across grade-bands: **MS.PS3.D** (HS-PS4-4); **MS.PS4.B** (HS-PS4-4); **MS.LS1.C** (HS-PS4-4); **MS.ESS2.D** (HS-PS4-4)

Common Core State Standards Connections:

ELA/Literacy –

RST.9-10.8	Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-PS4-4)
RST.11-12.1	Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS4-4)
RST.11-12.7	Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-PS4-4)
RST.11-12.8	Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-PS4-4)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
HS. Waves and Electromagnetic Radiation

Students who demonstrate understanding can:

HS-PS4-5. Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.* [Clarification Statement: Examples could include solar cells capturing light and converting it to electricity; medical imaging; and communications technology.] [Assessment Boundary: Assessments do not include band theory.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices

Obtaining, Evaluating, and Communicating Information
- Obtain, evaluating, and communicating information in 9–12 builds on K–8 and progresses to evaluating the validity and reliability of the claims, methods, and designs.
 - Communicate technical information or ideas (e.g., about phenomena and/or the process of development and the design and performance of a proposed process or system) in multiple formats (including orally, graphically, textually, and mathematically). (HS-PS4-5)

Disciplinary Core Ideas

PS3.D: Energy in Chemical Processes
- Solar cells are human-made devices that likewise capture the sun’s energy and produce electrical energy. (secondary to HS-PS4-5)

PS4.A: Wave Properties
- Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-5)

PS4.B: Electromagnetic Radiation
- Photovoltaic materials emit electrons when they absorb light of a high-enough frequency. (HS-PS4-5)

PS4.C: Information Technologies and Instrumentation
- Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for producing, transmitting, and capturing signals and for storing and interpreting the information contained in them. (HS-PS4-5)

Connections to other DCIs in this grade-band: **HS-PS3.A** (HS-PS4-5)

Articulation to DCIs across grade-bands: **MS-PS4.A** (HS-PS4-5); **MS-PS4.B** (HS-PS4-5); **MS-PS4.C** (HS-PS4-5)

Common Core State Standards Connections:
- ELA/Literacy – **WHST.9-12.2** Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes. (HS-PS4-5)
HS. Engineering Design

Students who demonstrate understanding can:

HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Asking Questions and Defining Problems

Asking questions and defining problems in 9–12 builds on K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.

- Analyze complex real-world problems by specifying criteria and constraints for successful solutions. (HS-ETS1-1)

Disciplinary Core Ideas

ETS1.A: Defining and Delimiting Engineering Problems

- Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (HS-ETS1-1)
- Humanity faces major global challenges today, such as the need for supplies of clean water and food or for energy sources that minimize pollution, which can be addressed through engineering. These global challenges also may have manifestations in local communities. (HS-ETS1-1)

Connections to HS-ETS1.A: Defining and Delimiting Engineering Problems include:

Physical Science: HS-PS2-3, HS-PS3-3

Earth and Space Science: HS-ESS3-2, HS-ESS3-4

Life Science: HS-LS2-7, HS-LS4-6

Articulation of DCIs across grade-bands: MS.ETS1.A (HS-ETS1-1)

Crosscutting Concepts

Connections to Engineering, Technology, and Applications of Science

Influence of Science, Engineering, and Technology on Society and the Natural World

- New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ETS1-1)

Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include:

Physical Science: HS-PS2-3, HS-PS3-3

Earth and Space Science: HS-ESS3-2, HS-ESS3-4

Life Science: HS-LS2-7, HS-LS4-6

Connections to HS-ETS1.C: Optimizing the Design Solution include:

Physical Science: HS-PS1-6, HS-PS2-3

Common Core State Standards Connections:

ELA/Literacy –

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ETS1-1)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-1)

RST.11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-ETS1-1)

Mathematics –

MP.2 Reason abstractly and quantitatively. (HS-ETS1-1)

MP.4 Model with mathematics. (HS-ETS1-1)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
HS. Engineering Design

Students who demonstrate understanding can:

HS-ETS1-3. Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics, as well as possible social, cultural, and environmental impacts.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
</tbody>
</table>
| Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories.
 ▪ Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. (HS-ETS1-3) | ▪ When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (HS-ETS1-3) | **Influence of Science, Engineering, and Technology on Society and the Natural World** |
| | | ▪ New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions about technology. (HS-ETS1-3) |

Connections to HS-ETS1.A: Defining and Delimiting Engineering Problems include:

- **Physical Science:** HS-PS2-3, HS-PS3-3
- **Earth and Space Science:** HS-ESS3-2, HS-ESS3-4, **Life Science:** HS-LS2-7, HS-LS4-6

Connections to HS-ETS1.B: Designing Solutions to Engineering Problems include:

- **Physical Science:** HS-PS1-6, HS-PS2-3

Connections to HS-ETS1.C: Optimizing the Design Solution include:

- **Physical Science:** HS-PS2-3

Articulation of DCIs across grade-bands: **MS.ETS1.A** (HS-ETS1-3); **MS.ETS1.B** (HS-ETS1-3)

Common Core State Standards Connections:

EUA/Literacy –

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ETS1-3)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ETS1-3)

RST.11-12.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible. (HS-ETS1-3)

Mathematics –

MP.2 Reason abstractly and quantitatively. (HS-ETS1-3)

MP.4 Model with mathematics. (HS-ETS1-3)
<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>PS4.A: Wave Properties</td>
<td>Stability and Change</td>
</tr>
<tr>
<td>Asking questions and defining problems in grades 9–12 builds from grades K–8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations.</td>
<td>▪ Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in computer memory and sent over long distances as a series of wave pulses. (HS-PS4-2)</td>
<td>▪ Systems can be designed for greater or lesser stability. (HS-PS4-2)</td>
</tr>
<tr>
<td>▪ Evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. (HS-PS4-2)</td>
<td></td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Influence of Engineering, Technology, and Science on Society and the Natural World</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Modern civilization depends on major technological systems. (HS-PS4-2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks. (HS-PS4-2)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: N/A

Articulation to DCIs across grade-bands: MS.PS4.A (HS-PS4-2); MS.PS4.B (HS-PS4-2) MS.PS4.C (HS-PS4-2)

Common Core State Standards Connections:

ELA/Literacy – RST.9-10.8
Assess the extent to which the reasoning and evidence in a text support the author’s claim or a recommendation for solving a scientific or technical problem. (HS-PS4-2)

RST.11-12.1
Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-PS4-2)

RST.11-12.8
Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-PS4-2)
Unit of Study 8: Electricity and Magnetism (12 Days)

Standards that appear in this unit: HS-PS2-5, HS-PS3-5

<table>
<thead>
<tr>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
<th>Science and Engineering Practices</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2.B: Types of Interactions</td>
<td>Cause and Effect</td>
<td>Planning and Carrying Out Investigations</td>
</tr>
</tbody>
</table>
| • Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields. (HS-PS2-5)** | • Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-PS2-5) | Planning and carrying out investigations to answer questions or test solutions to problems in 9–12 builds on K–8 experiences and progresses to include investigations that provide evidence for and test conceptual, mathematical, physical and empirical models.
• Plan and conduct an investigation individually and collaboratively to produce data to serve as the basis for evidence, and in the design: decide on types, how much, and accuracy of data needed to produce reliable measurements and consider limitations on the precision of the data (e.g., number of trials, cost, risk, time), and refine the design accordingly. (HS-PS2-5) |

Connections to other DCIs in this grade-band: HS.PS3.A (HS-PS2-5); HS.PS4.B (HS-PS2-5); HS.ESS2.A (HS-PS2-5); HS.ESS3.A (HS-PS2-5)

Articulation to DCIs across grade-bands: MS.PS2.B (HS-PS2-5); MS.ESS1.B (HS-PS2-5)

Common Core State Standards Connections:

ELA/Literacy –

WHST.9-12.7	Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS2-5)
WHST.11-12.8	Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS2-5)
WHST.9-12.9	Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-5)

Mathematics –

HSN-Q.A.1	Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-5)
HSN-Q.A.2	Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-5)
HSN-Q.A.3	Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-5)

Bristol–Warren, Central Falls, Cranston, Cumberland, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
HS. Energy

Students who demonstrate understanding can:

HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.
[Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.]
[Assessment Boundary: Assessment is limited to systems containing two objects.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>PS3.C: Relationship Between Energy and Forces</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Modeling in 9–12 builds on K–8 and progresses to using, synthesizing, and developing models to predict and show relationships among variables between systems and their components in the natural and designed worlds.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Develop and use a model based on evidence to illustrate the relationships between systems or between components of a system. (HS-PS3-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ When two objects interacting through a field change relative position, the energy stored in the field is changed. (HS-PS3-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Cause and effect relationships can be suggested and predicted for complex natural and human designed systems by examining what is known about smaller scale mechanisms within the system. (HS-PS3-5)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-band: **HS-PS2.B** (HS-PS3-5)

Articulation to DCIs across grade-bands: **MS-PS2.B** (HS-PS3-5); **MS-PS3.C** (HS-PS3-5)

Common Core State Standards Connections:

ELA/Literacy –

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS3-5)

WHST.11-12.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS3-5)

WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS3-5)

SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-5)

Mathematics –

MP.2 Reason abstractly and quantitatively. (HS-PS3-5)

MP.4 Model with mathematics. (HS-PS3-5)