Grade 5 Science
Scope and Sequence

Unit of Study 1: Properties of Matter (15 days)

Standards that appear this unit: 5-PS1-3, 5-PS1-1

<table>
<thead>
<tr>
<th>5.Structure and Properties of Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>5-PS1-3. Make observations and measurements to identify materials based on their properties. [Clarification Statement: Examples of materials to be identified could include baking soda and other powders, metals, minerals, and liquids. Examples of properties could include color, hardness, reflectivity, electrical conductivity, thermal conductivity, response to magnetic forces, and solubility; density is not intended as an identifiable property.] [Assessment Boundary: Assessment does not include density or distinguishing mass and weight.]</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices

Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
- Make observations and measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (5-PS1-3)

Disciplinary Core Ideas

PS1.A: Structure and Properties of Matter
- Measurements of a variety of properties can be used to identify materials. (Boundary: At this grade level, mass and weight are not distinguished, and no attempt is made to define the unseen particles or explain the atomic-scale mechanism of evaporation and condensation.) (5-PS1-3)

Crosscutting Concepts

Scale, Proportion, and Quantity
- Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. (5-PS1-3)

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 2.PS1.A (5-PS1-3); MS.PS1.A (5-PS1-3)

Common Core State Standards Connections:

ELA/Literacy –
- **W.5.7** Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (5-PS1-3)
- **W.5.8** Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-PS1-3)
- **W.5.9** Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-PS1-3)

Mathematics –
- **MP.2** Reason abstractly and quantitatively. (5-PS1-3)
- **MP.4** Model with mathematics. (5-PS1-3)
- **MP.5** Use appropriate tools strategically. (5-PS1-3)

Bristol–Warren, Central Falls, Cranston, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
5. Structure and Properties of Matter

Students who demonstrate understanding can:

5-PS1-1. Develop a model to describe that matter is made of particles too small to be seen. [Clarification Statement: Examples of evidence could include adding air to expand a basketball, compressing air in a syringe, dissolving sugar in water, and evaporating salt water.] [Assessment Boundary: Assessment does not include the atomic-scale mechanism of evaporation and condensation or defining the unseen particles.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>PS1.A: Structure and Properties of Matter</td>
<td>Scale, Proportion, and Quantity</td>
</tr>
<tr>
<td>Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
<td>- Matter of any type can be subdivided into particles that are too small to see, but even then the matter still exists and can be detected by other means. A model showing that gases are made from matter particles that are too small to see and are moving freely around in space can explain many observations, including the inflation and shape of a balloon and the effects of air on larger particles or objects. (5-PS1-1)</td>
<td>- Natural objects exist from the very small to the immensely large. (5-PS1-1)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 2.PS1.A (5-PS1-1); MS.PS1.A (5-PS1-1)

Common Core State Standards Connections:

ELA/Literacy – RI.5.7
- Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-PS1-1)

Mathematics – MP.2
- Reason abstractly and quantitatively. (5-PS1-1)

MP.4
- Model with mathematics. (5-PS1-1)

5.NBT.A.1
- Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. (5-PS1-1)

5.NF.B.7
- Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (5-PS1-1)

5.MD.C.3
- Recognize volume as an attribute of solid figures and understand concepts of volume measurement. (5-PS1-1)

5.MD.C.4
- Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. (5-PS1-1)
Unit of Study 2: Changes to Matter (15 days)

Standards that appear this unit: 5-PS1-4, 5-PS1-2

5. Structure and Properties of Matter

Students who demonstrate understanding can:

5-PS1-4. Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out...</td>
<td>PS1.B: Chemical Reactions</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Investigations</td>
<td>▪ When two or more different substances are mixed, a new substance with different properties may be formed. (5-PS1-4)</td>
<td>▪ Cause and effect relationships are routinely identified, tested, and used to explain change. (5-PS1-4)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: **2.PS1.B** (5-PS1-4); **MS.PS1.A** (5-PS1-4); **MS.PS1.B** (5-PS1-4)

Common Core State Standards Connections:

ELA/Literacy –

W.5.7 Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (5-PS1-4)

W.5.8 Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-PS1-4)

W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-PS1-4)
5. Structure and Properties of Matter

Students who demonstrate understanding can:

5-PS1-2. Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.

[Clarification Statement: Examples of reactions or changes could include phase changes, dissolving, and mixing that form new substances.] [Assessment Boundary: Assessment does not include distinguishing mass and weight.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.</td>
<td>▪ The amount (weight) of matter is conserved when it changes form, even in transitions in which it seems to vanish. (5-PS1-2)</td>
<td>▪ Standard units are used to measure and describe physical quantities such as weight, time, temperature, and volume. (5-PS1-2)</td>
</tr>
<tr>
<td>▪ Measure and graph quantities such as weight to address scientific and engineering questions and problems. (5-PS1-2)</td>
<td>PS1.B: Chemical Reactions</td>
<td>Connections to Nature of Science</td>
</tr>
<tr>
<td></td>
<td>▪ No matter what reaction or change in properties occurs, the total weight of the substances does not change. (Boundary: Mass and weight are not distinguished at this grade level.) (5-PS1-2)</td>
<td>▪ Scientific Knowledge Assumes an Order and Consistency in Natural Systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Science assumes consistent patterns in natural systems. (5-PS1-2)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 2.PS1.A (5-PS1-2); 2.PS1.B (5-PS1-2); MS.PS1.A (5-PS1-2); MS.PS1.B (5-PS1-2)

| **Common Core State Standards Connections:** |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| **ELA/Literacy –** | **Mathematics –** | **Conversions among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems. (5-PS1-2)** |
| **W.5.7** | **MP.2** | **Reason abstractly and quantitatively. (5-PS1-2)** |
| **W.5.8** | **MP.4** | **Model with mathematics. (5-PS1-2)** |
| **W.5.9** | **MP.5** | **Use appropriate tools strategically. (5-PS1-2)** |
| **Mathematics –** | **S.MD.A.1** | **Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real-world problems. (5-PS1-2)** |
Unit of Study 3: Energy and Matter in Ecosystems (20 days)

Standards that appear this unit: 5-LS1-1, 5-LS2-1, 5-PS3-1

5. Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

5-LS1-1. Support an argument that plants get the materials they need for growth chiefly from air and water. [Clarification Statement: Emphasis is on the idea that plant matter comes mostly from air and water, not from the soil.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

Science and Engineering Practices
Engaging in Argument from Evidence
Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).
- Support an argument with evidence, data, or a model. (5-LS1-1)

Disciplinary Core Ideas
- Plants acquire their material for growth chiefly from air and water. (5-LS1-1)

Crosscutting Concepts
Energy and Matter
- Matter is transported into, out of, and within systems. (5-LS1-1)

Connections to other DCIs in fifth grade: 5.PS1.A (5-LS1-1)

Articulation of DCIs across grade-levels: K.LS1.C (5-LS1-1); 2.LS2.A (5-LS1-1); MS.LS1.C (5-LS1-1)

Common Core State Standards Connections:
ELA/Literacy
- RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-LS1-1)
- RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-LS1-1)
- W.5.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-LS1-1)

Mathematics
- MP.2 Reason abstractly and quantitatively. (5-LS1-1)
- MP.4 Model with mathematics. (5-LS1-1)
- MP.5 Use appropriate tools strategically. (5-LS1-1)
- 5.MD.A.1 Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. (5-LS1-1)
5. Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

5-LS2-1. Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment. [Clarification Statement: Emphasis is on the idea that matter that is not food (air, water, decomposed materials in soil) is changed by plants into matter that is food. Examples of systems could include organisms, ecosystems, and the Earth.] [Assessment Boundary: Assessment does not include molecular explanations.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Models, Laws,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanisms, and Theories</td>
<td>- The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria, break down dead organisms (both plants or plants parts and animals) and therefore operate as “decomposers.” Decomposition eventually restores (recycles) some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. (5-LS2-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS2.B: Cycles of Matter and Energy Transfer in Ecosystems</td>
<td></td>
</tr>
<tr>
<td>Explain Natural Phenomena</td>
<td>- Matter cycles between the air and soil and among plants, animals, and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter (gas, liquid, or solid) back into the environment. (5-LS2-1)</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade:

- **5.PS1.A** (5-LS2-1); **5.ESS2.A** (5-LS2-1)
- **Articulation of DCIs across grade-levels:**
 - **2.PS1.A** (5-LS2-1); **2.LS4.D** (5-LS2-1); **4.ESS2.E** (5-LS2-1); **MS.PS3.D** (5-LS2-1);
 - **MS.LS1.C** (5-LS2-1); **MS.LS2.A** (5-LS2-1); **MS.LS2.B** (5-LS2-1)

Common Core State Standards Connections:

ELA/Literacy –

- **RI.5.7** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-LS2-1)
- **SL.5.5** Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-LS2-1)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (5-LS2-1)
- **MP.4** Model with mathematics. (5-LS2-1)
5. Matter and Energy in Organisms and Ecosystems

Students who demonstrate understanding can:

5-PS3-1. Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun. [Clarification Statement: Examples of models could include diagrams, and flow charts.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>PS3.D: Energy in Chemical Processes and Everyday Life</td>
<td>Energy and Matter</td>
</tr>
<tr>
<td>Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
<td>- The energy released [from] food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). (5-PS3-1)</td>
<td>- Energy can be transferred in various ways and between objects. (5-PS3-1)</td>
</tr>
<tr>
<td>- Use models to describe phenomena. (5-PS3-1)</td>
<td>LS1.C: Organization for Matter and Energy Flow in Organisms</td>
<td></td>
</tr>
<tr>
<td>- Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion. (secondary to 5-PS3-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: K.LS1.C (5-PS3-1); 2.LS2.A (5-PS3-1); 4.PS3.A (5-PS3-1); 4.PS3.B (5-PS3-1); 4.PS3.D (5-PS3-1); MS.PS3.D (5-PS3-1); MS.PS4.B (5-PS3-1); MS.LS1.C (5-PS3-1); MS.LS2.B (5-PS3-1)

Common Core State Standards Connections:

ELA/Literacy –

- **RI.5.7** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-PS3-1)

- **SL.5.5** Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-PS3-1)
Unit of Study 4: Water on the Earth (15 days)

Standards that appear this unit: 5-ESS2-2, 5-ESS3-1

5. Earth’s Systems

Students who demonstrate understanding can:

- **5-ESS2-2.** Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth. [Assessment Boundary: Assessment is limited to oceans, lakes, rivers, glaciers, ground water, and polar ice caps, and does not include the atmosphere.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using Mathematics and Computational Thinking</td>
<td>ESS2.C: The Roles of Water in Earth’s Surface Processes</td>
<td>Scale, Proportion, and Quantity</td>
</tr>
<tr>
<td>Mathematical and computational thinking in 3–5 builds on K–2 experiences and progresses to extending quantitative measurements to a variety of physical properties and using computation and mathematics to analyze data and compare alternative design solutions.</td>
<td>- Nearly all of Earth’s available water is in the ocean. Most fresh water is in glaciers or underground; only a tiny fraction is in streams, lakes, wetlands, and the atmosphere. (5-ESS2-2)</td>
<td>- Standard units are used to measure and describe physical quantities such as weight, and volume. (5-ESS2-2)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 2.ESS2.C (5-ESS2-2); MS.ESS2.C (5-ESS2-2); MS.ESS3.A (5-ESS2-2)

Common Core State Standards Connections:

ELA/Literacy –
- **RI.5.7** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS2-2)
- **W.5.8** Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-ESS2-2)
- **SL.5.5** Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS2-2)

Mathematics –
- **MP.2** Reason abstractly and quantitatively. (5-ESS2-2)
- **MP.4** Model with mathematics. (5-ESS2-2)
5. Earth’s Systems

Students who demonstrate understanding can:

5-ESS3-1. Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td>ESS3.C: Human Impacts on Earth Systems</td>
<td>Systems and System Models</td>
</tr>
<tr>
<td>Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.</td>
<td>▪ Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments. (5-ESS3-1)</td>
<td>▪ A system can be described in terms of its components and their interactions. (5-ESS3-1)</td>
</tr>
<tr>
<td>▪ Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem. (5-ESS3-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: MS.ESS3.A (5-ESS3-1); MS.ESS3.C (5-ESS3-1); MS.ESS3.D (5-ESS3-1)

Common Core State Standards Connections:

ELA/Literacy –

RI.5.1	Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-ESS3-1)
RI.5.7	Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS3-1)
RI.5.9	Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-ESS3-1)
W.5.8	Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-ESS3-1)
W.5.9	Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-ESS3-1)

Mathematics –

| **MP.2** | Reason abstractly and quantitatively. (5-ESS3-1) |
| **MP.4** | Model with mathematics. (5-ESS3-1) |
Unit of Study 5: Earth Systems (18 days)

Standards that appear this unit: 5-ESS2-1, 5-ESS3-1

5. Earth’s Systems

Students who demonstrate understanding can:

5-ESS2-1. Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact. [Clarification Statement: Examples could include the influence of the ocean on ecosystems, landform shape, and climate; the influence of the atmosphere on landforms and ecosystems through weather and climate; and the influence of mountain ranges on winds and clouds in the atmosphere. The geosphere, hydrosphere, atmosphere, and biosphere are each a system.] [Assessment Boundary: Assessment is limited to the interactions of two systems at a time.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
<td>▪ Earth’s major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere (air), and the biosphere (living things, including humans). These systems interact in multiple ways to affect Earth’s surface materials and processes. The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate. Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather. (5-ESS2-1)</td>
<td>▪ A system can be described in terms of its components and their interactions. (5-ESS2-1)</td>
</tr>
<tr>
<td>▪ Develop a model using an example to describe a scientific principle. (5-ESS2-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 2.ESS2.A (5-ESS2-1); 3.ESS2.D (5-ESS2-1); 4.ESS2.A (5-ESS2-1); MS.ESS2.A (5-ESS2-1); MS.ESS2.C (5-ESS2-1); MS.ESS2.D (5-ESS2-1)

Common Core State Standards Connections:

ELA/Literacy –

- **RI.1.5.7** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS2-2)
- **SL.5.5** Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS2-1)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (5-ESS2-1)
- **MP.4** Model with mathematics. (5-ESS2-1)
- **5.G.2** Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. (5-ESS2-1)
5.Earth’s Systems

Students who demonstrate understanding can:

5-ESS3-1 Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtaining, Evaluating, and Communicating Information</td>
<td>ESS3.C: Human Impacts on Earth Systems</td>
<td>Systems and System Models</td>
</tr>
</tbody>
</table>
| Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluating the merit and accuracy of ideas and methods.
 ▪ Obtain and combine information from books and/or other reliable media to explain phenomena or solutions to a design problem. (5-ESS3-1) | ▪ Human activities in agriculture, industry, and everyday life have had major effects on the land, vegetation, streams, ocean, air, and even outer space. But individuals and communities are doing things to help protect Earth’s resources and environments. (5-ESS3-1) | ▪ A system can be described in terms of its components and their interactions. (5-ESS3-1) |

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: **MS.ESS3.A** (5-ESS3-1); **MS.ESS3.C** (5-ESS3-1); **MS.ESS3.D** (5-ESS3-1)

Common Core State Standards Connections:

ELA/Literacy –

- **RI.5.1** Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-ESS3-1)
- **RI.5.7** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS3-1)
- **RI.5.9** Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-ESS3-1)
- **W.5.8** Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (5-ESS3-1)
- **W.5.9** Draw evidence from literary or informational texts to support analysis, reflection, and research. (5-ESS3-1)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (5-ESS3-1)
- **MP.4** Model with mathematics. (5-ESS3-1)
Unit of Study 6: Interactions Within the Earth, Sun, and Moon System (17 days)

Standards that appear this unit: 5-PS2-1, 5-ESS1-1, 5-ESS1-2

5.Space Systems: Stars and the Solar System

Students who demonstrate understanding can:

5-PS2-1. Support an argument that the gravitational force exerted by Earth on objects is directed down.

[Clarification Statement: “Down” is a local description of the direction that points toward the center of the spherical Earth.] [Assessment Boundary: Assessment does not include mathematical representation of gravitational force.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>PS2.B: Types of Interactions</td>
<td>Cause and Effect</td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td>- The gravitational force of Earth acting on an object near Earth's surface pulls that object toward the planet's center. (5-PS2-1)</td>
<td>- Cause and effect relationships are routinely identified and used to explain change. (5-PS2-1)</td>
</tr>
<tr>
<td>• Support an argument with evidence, data, or a model. (5-PS2-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 3.PS2.A (5-PS2-1); 3.PS2.B (5-PS2-1); MS.PS2.B (5-PS2-1); MS.ESS2.C (5-PS2-1); MS.ESS1.B (5-PS2-1)

Common Core State Standards Connections:

ELA/Literacy –

- **RI.5.1** Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-PS2-1)
- **RI.5.9** Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-PS2-1)
- **W.5.1** Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-PS2-1)
5. Space Systems: Stars and the Solar System

Students who demonstrate understanding can:

5-ESS1-1. Support an argument that differences in the apparent brightness of the sun compared to other stars is due to their relative distances from Earth.
[Assessment Boundary: Assessment is limited to relative distances, not sizes, of stars. Assessment does not include other factors that affect apparent brightness (such as stellar masses, age, stage).]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>ESS1.A: The Universe and its Stars</td>
<td></td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Support an argument with evidence, data, or a model. (5-ESS1-1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disciplinary Core Ideas

ESS1.A: The Universe and its Stars

- The sun is a star that appears larger and brighter than other stars because it is closer. Stars range greatly in their distance from Earth. (5-ESS1-1)

Crosscutting Concepts

Scale, Proportion, and Quantity

- Natural objects exist from the very small to the immensely large. (5-ESS1-1)

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: MS.ESS1.A (5-ESS1-1); MS.ESS1.B (5-ESS1-1)

Common Core State Standards Connections:

ELA/Literacy –

RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (5-ESS1-1)

RI.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (5-ESS1-1)

RI.5.8 Explain how an author uses reasons and evidence to support particular points in a text, identifying which reasons and evidence support which point(s). (5-ESS1-1)

RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (5-ESS1-1)

W.5.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (5-ESS1-1)

Mathematics –

MP.2 Reason abstractly and quantitatively. (5-ESS1-1)

5.NBT.A.2 Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. (5-ESS1-1)

Bristol–Warren, Central Falls, Cranston, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
5. Space Systems: Stars and the Solar System

Students who demonstrate understanding can:

5-ESS1-2. Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. [Clarification Statement: Examples of patterns could include the position and motion of Earth with respect to the sun and selected stars that are visible only in particular months.] [Assessment Boundary: Assessment does not include causes of seasons.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ESS1.B: Earth and the Solar System</td>
<td>Patterns</td>
</tr>
<tr>
<td>Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.</td>
<td>▪ The orbits of Earth around the sun and of the moon around Earth, together with the rotation of Earth about an axis between its North and South poles, cause observable patterns. These include day and night; daily changes in the length and direction of shadows; and different positions of the sun, moon, and stars at different times of the day, month, and year. (5-ESS1-2)</td>
<td>▪ Similarities and differences in patterns can be used to sort, classify, communicate and analyze simple rates of change for natural phenomena. (5-ESS1-2)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in fifth grade: N/A

Articulation of DCIs across grade-levels: 1.ESS1.A (5-ESS1-2); 1.ESS1.B (5-ESS1-2); 3.PS2.A (5-ESS1-2); MS.ESS1.A (5-ESS1-2); MS.ESS1.B (5-ESS1-2)

Common Core State Standards Connections:

ELA/Literacy –

SL.5.5 Include multimedia components (e.g., graphics, sound) and visual displays in presentations when appropriate to enhance the development of main ideas or themes. (5-ESS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (5-ESS1-2)

MP.4 Model with mathematics. (5-ESS1-2)

5.G.A.2 Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. (5-ESS1-2)