Grade 4 Science

Scope and Sequence

Unit of Study 1: Weathering and Erosion (9 days)

Standards that appear this unit: 4-ESS2-1, 4-ESS1-1

4.Earth’s Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

4-ESS2-1 Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation. [Clarification Statement: Examples of variables to test could include angle of slope in the downhill movement of water, amount of vegetation, speed of wind, relative rate of deposition, cycles of freezing and thawing of water, cycles of heating and cooling, and volume of water flow.] [Assessment Boundary: Assessment is limited to a single form of weathering or erosion.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K–12 Science Education:

Science and Engineering Practices
Planning and Carrying Out Investigations
Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
- Make observations and/or measurements to produce data to serve as the basis for evidence for an explanation of a phenomenon. (4-ESS2-1)

Disciplinary Core Ideas
ESS2.A: Earth Materials and Systems
- Rainfall helps to shape the land and affects the types of living things found in a region. Water, ice, wind, living organisms, and gravity break rocks, soils, and sediments into smaller particles and move them around. (4-ESS2-1)

ESS2.E: Biogeology
- Living things affect the physical characteristics of their regions. (4-ESS2-1)

Crosscutting Concepts
Cause and Effect
- Cause and effect relationships are routinely identified, tested, and used to explain change. (4-ESS2-1)

Connections to other DCIs in fourth grade: N/A
Articulation of DCIs across grade-levels: 2.ESS1.C (4-ESS2-1); 2.ESS2.A (4-ESS2-1); 5.ESS2.A (4-ESS2-1);

Common Core State Standards Connections:
ELA/Literacy –
W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ESS2-1)
W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ESS2-1)

Mathematics –
MP.2 Reason abstractly and quantitatively. (4-ESS2-1)
MP.4 Model with mathematics. (4-ESS2-1)
MP.5 Use appropriate tools strategically. (4-ESS2-1)
4.MD.A.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. (4-ESS2-1)
4.MD.A.2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. (4-ESS2-1)

Bristol–Warren, Central Falls, Cranston, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
4. Earth’s Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

4-ESS1-1. **Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.** [Clarification Statement: Examples of evidence from patterns could include rock layers with marine shell fossils above rock layers with plant fossils and no shells, indicating a change from land to water over time; and, a canyon with different rock layers in the walls and a river in the bottom, indicating that over time a river cut through the rock.] [Assessment Boundary: Assessment does not include specific knowledge of the mechanism of rock formation or memorization of specific rock formations and layers. Assessment is limited to relative time.]

The performance expectations above were developed using the following elements from the NRC document: *A Framework for K-12 Science Education:*

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ESS1.C: The History of Planet Earth</td>
<td></td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
<td>▪ Local, regional, and global patterns of rock formations reveal changes over time due to earth forces, such as earthquakes. The presence and location of certain fossil types indicate the order in which rock layers were formed. (4-ESS1-1)</td>
<td>Patterns</td>
</tr>
<tr>
<td>▪ Identify the evidence that supports particular points in an explanation. (4-ESS1-1)</td>
<td></td>
<td>Patterns can be used as evidence to support an explanation. (4-ESS1-1)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in fourth grade: N/A

Articulation of DCIs across grade-levels: 2.ESS1.C (4-ESS1-1); 3.LS4.A (4-ESS1-1); MS.LS4.A (4-ESS1-1); MS.ESS1.C (4-ESS1-1); MS.ESS2.A (4-ESS1-1); MS.ESS2.B (4-ESS1-1)

Common Core State Standards Connections:

ELA/Literacy –

W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ESS1-1)

W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ESS1-1)

W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-ESS1-1)

Mathematics –

MP.2 Reason abstractly and quantitatively. (4-ESS1-1)

MP.4 Model with mathematics. (4-ESS1-1)

4.MD.A.1 Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. (4-ESS1-1)
Unit of Study 2: Earth Processes (12 days)

Standards that appear this unit: 4-ESS2-2, 4-ESS3-2*, 3-5 ETS1-2, 3-5-ETS1-3

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzing and Interpreting Data</td>
<td>ESS2.B: Plate Tectonics and Large-Scale System Interactions</td>
<td>Patterns</td>
</tr>
<tr>
<td>Analyzing data in 3–5 builds on K–2 experiences and progresses to introducing quantitative approaches to collecting data and conducting multiple trials of qualitative observations. When possible and feasible, digital tools should be used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Analyze and interpret data to make sense of phenomena using logical reasoning. (4-ESS2-2)</td>
<td>• The locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns. Most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans. Major mountain chains form inside continents or near their edges. Maps can help locate the different land and water features areas of Earth. (4-ESS2-2)</td>
<td>• Patterns can be used as evidence to support an explanation. (4-ESS2-2)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in fourth grade: N/A

Articulation of DCIs across grade-levels: 2.ESS2.B (4-ESS2-2); 2.ESS2.C (4-ESS2-2); 5.ESS2.C (4-ESS2-2); MS.ESS1.C (4-ESS2-2); MS.ESS2.A (4-ESS2-2); MS.ESS2.B (4-ESS2-2)

Common Core State Standards Connections:

ELA/Literacy – RI.4.7 Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. (4-ESS2-2)

Mathematics – 4.MD.A.2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. (4-ESS2-2)
4. Earth’s Systems: Processes that Shape the Earth

Students who demonstrate understanding can:

4-ESS3-2. Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans. * [Clarification Statement: Examples of solutions could include designing an earthquake resistant building and improving monitoring of volcanic activity.] [Assessment Boundary: Assessment is limited to earthquakes, floods, tsunamis, and volcanic eruptions.]

The performance expectations above were developed using the following elements from the NRC document: A Framework for K-12 Science Education:

Science and Engineering Practices

Constructing Explanations and Designing Solutions

Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.

- Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design solution. (4-ESS3-2)

Disciplinary Core Ideas

ESS3.B: Natural Hazards

- A variety of hazards result from natural processes (e.g., earthquakes, tsunamis, volcanic eruptions). Humans cannot eliminate the hazards but can take steps to reduce their impacts. (4-ESS3-2) (Note: This Disciplinary Core Idea can also be found in 3.WC.)

ETS1.B: Designing Solutions to Engineering Problems

- Testing a solution involves investigating how well it performs under a range of likely conditions. (secondary to 4-ESS3-2)

Crosscutting Concepts

Cause and Effect

- Cause and effect relationships are routinely identified, tested, and used to explain change. (4-ESS3-2)

Connections to Engineering, Technology, and Applications of Science

Influence of Engineering, Technology, and Science on Society and the Natural World

- Engineers improve existing technologies or develop new ones to increase their benefits, to decrease known risks, and to meet societal demands. (4-ESS3-2)

Connections to other DCIs in fourth grade: 4.ETS1.C (4-ESS3-2)

Articulation of DCIs across grade-levels: K.ETS1.A (4-ESS3-2); 2.ETS1.B (4-ESS3-2); 2.ETS1.C (4-ESS3-2); MS.ESS2.A (4-ESS3-2); MS.ESS3.B (4-ESS3-2); MS.ESS1.B (4-ESS3-2)

Common Core State Standards Connections:

ELA/Literacy —

- **RI.4.1** Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-ESS3-2)

- **RI.4.9** Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-ESS3-2)

Mathematics —

- **MP.2** Reason abstractly and quantitatively. (4-ESS3-2)

- **MP.4** Model with mathematics. (4-ESS3-2)

- **4.OA.A.1** Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. (4-ESS3-2)
3-5. Engineering Design

Students who demonstrate understanding can:

3-5-EST-1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
</tbody>
</table>
| Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems. | • Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1-2)
• At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS1-2) | • Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (3-5-ETS1-2) |

Articulation of DCIs across grade-bands:
K-2.ETS1.A (3-5-ETS1-2); K-2.ETS1.B (3-5-ETS1-2); K-2.ETS1.C (3-5-ETS1-2); MS.ETS1.B (3-5-ETS1-2); MS.ETS1.C (3-5-ETS1-2)

Common Core State Standards Connections:

ELA/Literacy –

RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (3-5-ETS1-2)

RI.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (3-5-ETS1-2)

RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (3-5-ETS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (3-5-ETS1-2)

MP.4 Model with mathematics. (3-5-ETS1-2)

MP.5 Use appropriate tools strategically. (3-5-ETS1-2)

3-5.OA Operations and Algebraic Thinking (3-5-ETS1-2)

Bristol–Warren, Central Falls, Cranston, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
3-5. Engineering Design

Students who demonstrate understanding can:

3-5-ETS1-3. **Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.**

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
</table>
| **Planning and Carrying Out Investigations** | ETS1.B: Developing Possible Solutions
- Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-5-ETS1-3)
ETS1.C: Optimizing the Design Solution
- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS1-3) | N/A |
| Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
- Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-5-ETS1-3) | |

Articulation of DCIs across grade-bands:
K-2.ETS1.A (3-5-ETS1-3); K-2.ETS1.C (3-5-ETS1-3); MS.ETS1.B (3-5-ETS1-3); MS.ETS1.C (3-5-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy –

W.5.7 Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (3-5-ETS1-3)

W.5.8 Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (3-5-ETS1-3)

W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (3-5-ETS1-3)

Mathematics –

MP.2 Reason abstractly and quantitatively. (3-5-ETS1-3)

MP.4 Model with mathematics. (3-5-ETS1-3)

MP.5 Use appropriate tools strategically. (3-5-ETS1-3)

Bristol–Warren, Central Falls, Cranston, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
Unit of Study 3: Structures and Function (9 days)

Standards that appear this unit: 4-LS1-1

<table>
<thead>
<tr>
<th>4. Structure, Function, and Information Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students who demonstrate understanding can:</td>
</tr>
<tr>
<td>4-LS1-1 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction. [Clarification Statement: Examples of structures could include thorns, stems, roots, colored petals, heart, stomach, lung, brain, and skin.] [Assessment Boundary: Assessment is limited to macroscopic structures within plant and animal systems.]</td>
</tr>
</tbody>
</table>

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engaging in Argument from Evidence</td>
<td>LS1.A: Structure and Function</td>
<td></td>
</tr>
<tr>
<td>Engaging in argument from evidence in 3–5 builds on K–2 experiences and progresses to critiquing the scientific explanations or solutions proposed by peers by citing relevant evidence about the natural and designed world(s).</td>
<td>• Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction. (4-LS1-1)</td>
<td></td>
</tr>
<tr>
<td>• Construct an argument with evidence, data, and/or a model. (4-LS1-1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systems and System Models</td>
<td>• A system can be described in terms of its components and their interactions. (4-LS1-1)</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-level: N/A

Articulation of DCIs across grade-levels: **1.LS1.A (4-LS1-1); 3.LS3.B (4-LS1-1); MS.LS1.A (4-LS1-1)**

Common Core State Standards Connections:

ELA/Literacy –
W.4.1 Write opinion pieces on topics or texts, supporting a point of view with reasons and information. (4-LS1-1)

Mathematics –
4.G.A.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded across the line into matching parts. Identify line-symmetric figures and draw lines of symmetry. (4-LS1-1)
Unit of Study 4: How Organisms Process Information (9 days)

Standards that appear this unit: 4-LS1-2, 4-PS4-2

4. Structure, Function, and Information Processing

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>LS1.D: Information Processing</td>
<td></td>
</tr>
<tr>
<td>Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
<td>• Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal's brain. Animals are able to use their perceptions and memories to guide their actions. (4-LS1-2)</td>
<td>• A system can be described in terms of its components and their interactions. (LS1-2)</td>
</tr>
<tr>
<td>• Use a model to test interactions concerning the functioning of a natural system. (4-LS1-2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-level: N/A

Articulation of DCIs across grade-levels: **1.LS1.D** (4-LS1-2); **MS.LS1.A** (4-LS1-2); **MS.LS1.D** (4-LS1-2)

Common Core State Standards Connections:

ELA/Literacy – SL.4.5

Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-LS1-2)
4. Structure, Function, and Information Processing

Students who demonstrate understanding can:

4-PS4-2. Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen. [Assessment Boundary: Assessment does not include knowledge of specific colors reflected and seen, the cellular mechanisms of vision, or how the retina works.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developing and Using Models</td>
<td>PS4.B: Electromagnetic Radiation</td>
<td></td>
</tr>
<tr>
<td>Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Develop a model to describe phenomena. (4-PS4-2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause and Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>▪ Cause and effect relationships are routinely identified. (4-PS4-2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in this grade-level: N/A

Articulation of DCIs across grade-levels: 1.PS4.B (4-PS4-2); MS.PS4.B (4-PS4-2); MS.LS1.D (4-PS4-2)

Common Core State Standards Connections:

ELA/Literacy –

SL.4.5 Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-PS4-2)

Mathematics –

MP.4 Model with mathematics. (4-PS4-2)

4.G.A.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-2)
Unit of Study 5: Transfer of Energy (12 days)

Standards that appear this unit: 4-PS3-2, 4-ESS3-1

4.Energy

Students who demonstrate understanding can:

4-PS3-2. **Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.** [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K–12 Science Education*:

Science and Engineering Practices

Planning and Carrying Out Investigations

Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.

- Make observations to produce data to serve as the basis for evidence for an explanation of a phenomenon or test a design solution. (4-PS3-2)

Disciplinary Core Ideas

PS3.A: Definitions of Energy

- Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-2)

PS3.B: Conservation of Energy and Energy Transfer

- Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-2)
- Light also transfers energy from place to place. (4-PS3-2)
- Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-2)

Connections to other DCIs in fourth grade: N/A

Articulation of DCIs across grade-levels: **MS.PS2.B** (4-PS3-2); **MS.PS3.A** (4-PS3-2); **MS.PS3.B** (4-PS3-2); **MS.PS4.B** (4-PS3-2)

Crosscutting Concepts

Energy and Matter

- Energy can be transferred in various ways and between objects. (4-PS3-2)

Common Core State Standards Connections:

ELA/Literacy –

W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-PS3-2)

W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-PS3-2)
4.Energy

Students who demonstrate understanding can:

4-ESS3-1. Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. [Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; non-renewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

Science and Engineering Practices
- Obtaining, Evaluating, and Communicating Information
 - Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluate the merit and accuracy of ideas and methods.
 - Obtain and combine information from books and other reliable media to explain phenomena. (4-ESS3-1)

Disciplinary Core Ideas
- **ESS3.A: Natural Resources**
 - Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not. (4-ESS3-1)

Crosscutting Concepts
- **Cause and Effect**
 - Cause and effect relationships are routinely identified and used to explain change. (4-ESS3-1)
- **Connections to Engineering, Technology, and Applications of Science**
- **Interdependence of Science, Engineering, and Technology**
 - Knowledge of relevant scientific concepts and research findings is important in engineering. (4-ESS3-1)
- **Influence of Engineering, Technology, and Science on Society and the Natural World**
 - Over time, people’s needs and wants change, as do their demands for new and improved technologies. (4-ESS3-1)

Connections to other DCIs in fourth grade: N/A

Articulation of DCIs across grade-levels:
- **5.ESS3.C (4-ESS3-1); MS.PS3.D (4-ESS3-1); MS.ESS2.A (4-ESS3-1); MS.ESS3.A (4-ESS3-1); MS.ESS3.D (4-ESS3-1); MS.ESS3.C (4-ESS3-1); MS.ESS3.D (4-ESS3-1)**

Common Core State Standards Connections:
- **ELA/Literacy –**
 - W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-ESS3-1)
 - W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-ESS3-1)
 - W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-ESS3-1)
- **Mathematics –**
 - MP.2 Reason abstractly and quantitatively. (4-ESS3-1)
 - MP.4 Model with mathematics. (4-ESS3-1)
- **4.OA.A.1 Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 × 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. (4-ESS3-1)**
Unit of Study 6: Force and Motion (18 days)

Standards that appear this unit: 4-PS3-1, 4-PS3-3

4. Energy

Students who demonstrate understanding can:

4-PS3-1. Use evidence to construct an explanation relating the speed of an object to the energy of that object. [Assessment Boundary: Assessment does not include quantitative measures of changes in the speed of an object or on any precise or quantitative definition of energy.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>PS3.A: Definitions of Energy</td>
<td>Energy and Matter</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
<td>▪ The faster a given object is moving, the more energy it possesses. (4-PS3-1)</td>
<td>▪ Energy can be transferred in various ways and between objects. (4-PS3-1)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in fourth grade: N/A

Articulation of DCIs across grade-levels: MS.PS3.A (4-PS3-1)

Common Core State Standards Connections:

ELA/Literacy –

RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS3-1)

RI.4.3 Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. (4-PS3-1)

RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS3-1)

W.4.2 Write informative/explanatory texts to examine a topic and convey ideas and information clearly. (4-PS3-1)

W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-PS3-1)

W.4.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (4-PS3-1)
4. Energy

Students who demonstrate understanding can:

4-PS3-3. Ask questions and predict outcomes about the changes in energy that occur when objects collide. [Clarification Statement: Emphasis is on the change in the energy due to the change in speed, not on the forces, as objects interact.] [Assessment Boundary: Assessment does not include quantitative measurements of energy.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>PS3.A: Definitions of Energy</td>
<td>Energy and Matter</td>
</tr>
<tr>
<td>Asking questions and defining problems in grades 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.</td>
<td>• Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (4-PS3-3)</td>
<td>• Energy can be transferred in various ways and between objects. (4-PS3-3)</td>
</tr>
<tr>
<td>• Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships. (4-PS3-3)</td>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. (4-PS3-3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PS3.C: Relationship Between Energy and Forces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• When objects collide, the contact forces transfer energy so as to change the objects’ motions. (4-PS3-3)</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in fourth grade: N/A

Articulation of DCIs across grade-levels: **K.PS2.B** (4-PS3-3); **3.PS2.A** (4-PS3-3); **MS.PS2.A** (4-PS3-3); **MS.PS3.A** (4-PS3-3); **MS.PS3.B** (4-PS3-3); **MS.PS3.C** (4-PS3-3);

Common Core State Standards Connections:

ELA/Literacy – W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-PS3-3)

W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-PS3-3)
Unit of Study 7: Using Engineering Design with Force and Motion Systems (21 days)

Standards that appear this unit: 4-PS3-4*, 3-5-ETS1-1, 3-5-ETS1-2, 3-5-ETS1-3

4. Energy

Students who demonstrate understanding can:

4-PS3-4. Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.* [Clarification Statement: Examples of devices could include electric circuits that convert electrical energy into motion energy of a vehicle, light, or sound; and, a passive solar heater that converts light into heat. Examples of constraints could include the materials, cost, or time to design the device.] [Assessment Boundary: Devices should be limited to those that convert motion energy to electric energy or use stored energy to cause motion or produce light or sound.]

The performance expectations above were developed using the following elements from the NRC document A Framework for K-12 Science Education:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>PS3.B: Conservation of Energy and Energy Transfer</td>
<td>Energy and Matter</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
<td>▪ Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy. (4-PS3-4)</td>
<td>▪ Energy can be transferred in various ways and between objects. (4-PS3-4)</td>
</tr>
<tr>
<td>▪ Apply scientific ideas to solve design problems. (4-PS3-4)</td>
<td>PS3.D: Energy in Chemical Processes and Everyday Life</td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td>▪ The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4)</td>
<td>▪ The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use. (4-PS3-4)</td>
<td></td>
</tr>
<tr>
<td>ETS1.A: Defining Engineering Problems</td>
<td>▪ Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)</td>
<td>Connections to Nature of Science</td>
</tr>
<tr>
<td>▪ Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (secondary to 4-PS3-4)</td>
<td>▪ Most scientists and engineers work in teams. (4-PS3-4)</td>
<td></td>
</tr>
<tr>
<td>▪ Science affects everyday life. (4-PS3-4)</td>
<td>Connections to Nature of Science</td>
<td></td>
</tr>
</tbody>
</table>

Connections to other DCIs in fourth grade: N/A

Articulation of DCIs across grade-levels: K.ETS1.A (4-PS3-4); 2.ETS1.B (4-PS3-4); 5.PS3.D (4-PS3-4); 5.LS1.C (4-PS3-4); MS.PS3.A (4-PS3-4); MS.PS3.B (4-PS3-4); MS.ETS1.B (4-PS3-4); MS.ETS1.C (4-PS3-4)

Common Core State Standards Connections:

ELA/Literacy –

W.4.7 Conduct short research projects that build knowledge through investigation of different aspects of a topic. (4-PS3-4)

W.4.8 Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. (4-PS3-4)

Mathematics –

4.OA.A.3 Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (4-PS3-4)

Bristol–Warren, Central Falls, Cranston, Tiverton, and Woonsocket, with process support from The Charles A. Dana Center at the University of Texas at Austin
3-5. Engineering Design

Students who demonstrate understanding can:

3-5-ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asking Questions and Defining Problems</td>
<td>ETS1.A: Defining and Delimiting Engineering Problems</td>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
<tr>
<td>Asking questions and defining problems in 3–5 builds on grades K–2 experiences and progresses to specifying qualitative relationships.</td>
<td>▪ Possible solutions to a problem are limited by available materials and resources (constraints). The success of a designed solution is determined by considering the desired features of a solution (criteria). Different proposals for solutions can be compared on the basis of how well each one meets the specified criteria for success or how well each takes the constraints into account. (3-5-ETS1-1)</td>
<td>▪ People’s needs and wants change over time, as do their demands for new and improved technologies. (3-5-ETS1-1)</td>
</tr>
</tbody>
</table>

Connections to 3-5-ETS1.A: Defining and Delimiting Engineering Problems include:

Fourth Grade: 4-PS3-4

Articulation of DCIs across grade-bands: **K-2.ETS1.A** (3-5-ETS1-1); **MS.ETS1.A** (3-5-ETS1-1); **MS.ETS1.B** (3-5-ETS1-1)

Common Core State Standards Connections: ELA/Literacy –

W.5.7 Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (3-5-ETS1-1)

W.5.8 Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (3-5-ETS1-1)

W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (3-5-ETS1-1)

Mathematics –

MP.2 Reason abstractly and quantitatively. (3-5-ETS1-1)

MP.4 Model with mathematics. (3-5-ETS1-1)

MP.5 Use appropriate tools strategically. (3-5-ETS1-1)

3-5.OA Operations and Algebraic Thinking (3-5-ETS1-1)
3-5. Engineering Design

Students who demonstrate understanding can:

3-5-EST-1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
<td>▪ Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1-2)</td>
<td>▪ Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (3-5-ETS1-2)</td>
</tr>
<tr>
<td>▪ Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. (3-5-ETS1-2)</td>
<td>▪ At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS1-2)</td>
<td></td>
</tr>
</tbody>
</table>

Articulation of DCIs across grade-bands: K-ETS1.A (3-5-ETS1-2); K-ETS1.B (3-5-ETS1-2); K-ETS1.C (3-5-ETS1-2); MS.ETS1.B (3-5-ETS1-2); MS.ETS1.C (3-5-ETS1-2)

Common Core State Standards Connections:

ELA/Literacy –

RI.5.1 Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (3-5-ETS1-2)

RI.5.7 Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (3-5-ETS1-2)

RI.5.9 Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (3-5-ETS1-2)

Mathematics –

MP.2 Reason abstractly and quantitatively. (3-5-ETS1-2)

MP.4 Model with mathematics. (3-5-ETS1-2)

MP.5 Use appropriate tools strategically. (3-5-ETS1-2)

3-5.OA Operations and Algebraic Thinking (3-5-ETS1-2)
3-5. Engineering Design

Students who demonstrate understanding can:

3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td>N/A</td>
</tr>
<tr>
<td>Investigations</td>
<td>- Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-5-ETS1-3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETS1.C: Optimizing the Design Solution</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS1-3)</td>
<td></td>
</tr>
</tbody>
</table>

Articulation of DCIs across grade-bands:

- **K-2.ETS1.A** (3-5-ETS1-3); **K-2.ETS1.C** (3-5-ETS1-3); **MS.ETS1.B** (3-5-ETS1-3); **MS.ETS1.C** (3-5-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy –

- **W.5.7** Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (3-5-ETS1-3)
- **W.5.8** Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (3-5-ETS1-3)
- **W.5.9** Draw evidence from literary or informational texts to support analysis, reflection, and research. (3-5-ETS1-3)

Mathematics –

- **MP.2** Reason abstractly and quantitatively. (3-5-ETS1-3)
- **MP.4** Model with mathematics. (3-5-ETS1-3)
- **MP.5** Use appropriate tools strategically. (3-5-ETS1-3)
Unit of Study 8: Waves and Information (18 days)

Standards that appear this unit: 4-PS4-1, 4-PS4-3*, 3-5-ETS1-2, 3-5-ETS1-3

4. Waves: Waves and Information

Students who demonstrate understanding can:

4-PS4-1. **Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.** [Clarification Statement: Examples of models could include diagrams, analogies, and physical models using wire to illustrate wavelength and amplitude of waves.] [Assessment Boundary: Assessment does not include interference effects, electromagnetic waves, non-periodic waves, or quantitative models of amplitude and wavelength.]

The performance expectations above were developed using the following elements from the NRC document _A Framework for K-12 Science Education_:

- **Science and Engineering Practices**
 - Developing and Using Models
 - Modeling in 3–5 builds on K–2 experiences and progresses to building and revising simple models and using models to represent events and design solutions.
 - Develop a model using an analogy, example, or abstract representation to describe a scientific principle. (4-PS4-1)

- **Disciplinary Core Ideas**
 - PS4.A: Wave Properties
 - Waves, which are regular patterns of motion, can be made in water by disturbing the surface. When waves move across the surface of deep water, the water goes up and down in place; there is no net motion in the direction of the wave except when the water meets a beach. (Note: This grade band endpoint was moved from K–2). (4-PS4-1)
 - Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). (4-PS4-1)

- **Crosscutting Concepts**
 - Patterns
 - Similarities and differences in patterns can be used to sort and classify natural phenomena. (4-PS4-1)

Connections to other DCIs in fourth grade: 4-PS3.A (4-PS4-1); 4-PS3.B (4-PS4-1)

Articulation of DCIs across grade-levels: MS-PS4.A (4-PS4-1)

Common Core State Standards Connections:
- **ELA/Literacy**
 - **SL.4.5** Add audio recordings and visual displays to presentations when appropriate to enhance the development of main ideas or themes. (4-PS4-1)
- **Mathematics**
 - **MP.4** Model with mathematics. (4-PS4-1)
 - **4.G.A.1** Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures. (4-PS4-1)
4. Waves: Waves and Information

Students who demonstrate understanding can:

4-PS4-3. Generate and compare multiple solutions that use patterns to transfer information. [Clarification Statement: Examples of solutions could include drums sending coded information through sound waves, using a grid of 1’s and 0’s representing black and white to send information about a picture, and using Morse code to send text.]

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>PS4.C: Information Technologies and Instrumentation</td>
<td>Patterns</td>
</tr>
<tr>
<td>Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems.</td>
<td>▪ Digitized information can be transmitted over long distances without significant degradation. High-tech devices, such as computers or cell phones, can receive and decode information—convert it from digitized form to voice—and vice versa. (4-PS4-3)</td>
<td>▪ Similarities and differences in patterns can be used to sort and classify designed products. (4-PS4-3)</td>
</tr>
<tr>
<td></td>
<td>ETS1.C: Optimizing The Design Solution</td>
<td>Connections to Engineering, Technology, and Applications of Science</td>
</tr>
<tr>
<td></td>
<td>▪ Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (secondary to 4-PS4-3)</td>
<td>Interdependence of Science, Engineering, and Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Knowledge of relevant scientific concepts and research findings is important in engineering. (4-PS4-3)</td>
</tr>
</tbody>
</table>

Connections to other DCIs in fourth grade: 4.ETS1.A (4-PS4-3)

Articulation of DCIs across grade-levels: K.ETS1.A (4-PS4-3); 1.PS4.C (4-PS4-3); 2.ETS1.B (4-PS4-3); 2.ETS1.C (4-PS4-3); 3.PS2.A (4-PS4-3); MS.PS4.C (4-PS4-3); MS.ETS1.B (4-PS4-3)

Common Core State Standards Connections:

ELA/Literacy –

RI.4.1 Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. (4-PS4-3)

RI.4.9 Integrate information from two texts on the same topic in order to write or speak about the subject knowledgeably. (4-PS4-3)
3-5. Engineering Design

Students who demonstrate understanding can:

3-5-EST-1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constructing Explanations and Designing Solutions</td>
<td>ETS1.B: Developing Possible Solutions</td>
<td>Influence of Science, Engineering, and Technology on Society and the Natural World</td>
</tr>
</tbody>
</table>
| Constructing explanations and designing solutions in 3–5 builds on K–2 experiences and progresses to the use of evidence in constructing explanations that specify variables that describe and predict phenomena and in designing multiple solutions to design problems. | • Research on a problem should be carried out before beginning to design a solution. Testing a solution involves investigating how well it performs under a range of likely conditions. (3-5-ETS1-2)
• At whatever stage, communicating with peers about proposed solutions is an important part of the design process, and shared ideas can lead to improved designs. (3-5-ETS1-2) | • Engineers improve existing technologies or develop new ones to increase their benefits, decrease known risks, and meet societal demands. (3-5-ETS1-2) |
| Generate and compare multiple solutions to a problem based on how well they meet the criteria and constraints of the design problem. (3-5-ETS1-2) | **Articulation of DCIs across grade-bands:** | **Common Core State Standards Connections:** |
| **K-2.ETS1.A** (3-5-ETS1-2); **K-2.ETS1.B** (3-5-ETS1-2); **K-2.ETS1.C** (3-5-ETS1-2); **MS.ETS1.B** (3-5-ETS1-2); **MS.ETS1.C** (3-5-ETS1-2) | **ELA/Literacy** – |
| **RI.5.1** Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. (3-5-ETS1-2) | **RI.5.7** Draw on information from multiple print or digital sources, demonstrating the ability to locate an answer to a question quickly or to solve a problem efficiently. (3-5-ETS1-2) |
| **RI.5.9** Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (3-5-ETS1-2) | **RI.5.9** Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. (3-5-ETS1-2) |
| **Mathematics** – | **Mathematics** – |
| **MP.2** Reason abstractly and quantitatively. (3-5-ETS1-2) | **MP.4** Model with mathematics. (3-5-ETS1-2) |
| **MP.5** Use appropriate tools strategically. (3-5-ETS1-2) | **MP.5** Use appropriate tools strategically. (3-5-ETS1-2) |
| **3-5.OA** Operations and Algebraic Thinking (3-5-ETS1-2) | **3-5.OA** Operations and Algebraic Thinking (3-5-ETS1-2) |
3-5. Engineering Design

Students who demonstrate understanding can:

3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

The performance expectations above were developed using the following elements from the NRC document *A Framework for K-12 Science Education*:

<table>
<thead>
<tr>
<th>Science and Engineering Practices</th>
<th>Disciplinary Core Ideas</th>
<th>Crosscutting Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning and Carrying Out
 Investigations
 Planning and carrying out investigations to answer questions or test solutions to problems in 3–5 builds on K–2 experiences and progresses to include investigations that control variables and provide evidence to support explanations or design solutions.
 • Plan and conduct an investigation collaboratively to produce data to serve as the basis for evidence, using fair tests in which variables are controlled and the number of trials considered. (3-5-ETS1-3)</td>
<td>ETS1.B: Developing Possible Solutions
 • Tests are often designed to identify failure points or difficulties, which suggest the elements of the design that need to be improved. (3-5-ETS1-3)</td>
<td>N/A</td>
</tr>
<tr>
<td>ETS1.C: Optimizing the Design Solution
 • Different solutions need to be tested in order to determine which of them best solves the problem, given the criteria and the constraints. (3-5-ETS1-3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Articulation of DCIs across grade-bands:
 K-2.ETS1.A (3-5-ETS1-3); K-2.ETS1.C (3-5-ETS1-3); MS.ETS1.B (3-5-ETS1-3); MS.ETS1.C (3-5-ETS1-3)

Common Core State Standards Connections:

ELA/Literacy –

W.5.7 Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. (3-5-ETS1-3)

W.5.8 Recall relevant information from experiences or gather relevant information from print and digital sources; summarize or paraphrase information in notes and finished work, and provide a list of sources. (3-5-ETS1-3)

W.5.9 Draw evidence from literary or informational texts to support analysis, reflection, and research. (3-5-ETS1-3)

Mathematics –

MP.2 Reason abstractly and quantitatively. (3-5-ETS1-3)

MP.4 Model with mathematics. (3-5-ETS1-3)

MP.5 Use appropriate tools strategically. (3-5-ETS1-3)